|
| 1 | +import numpy as np |
| 2 | +import onnxruntime as ort |
| 3 | +import pytest |
| 4 | +import torch |
| 5 | +from onnx import helper, TensorProto |
| 6 | + |
| 7 | +from onnx2pytorch.convert import ConvertModel |
| 8 | +from onnx2pytorch.operations.batchnorm import BatchNormWrapper |
| 9 | + |
| 10 | + |
| 11 | +@pytest.mark.parametrize( |
| 12 | + "batch_size,channels,height,width,epsilon,momentum", |
| 13 | + [ |
| 14 | + # Test with batch_size=1 |
| 15 | + (1, 3, 5, 5, 1e-5, 0.9), |
| 16 | + # Test with batch_size>1 (the critical case) |
| 17 | + (2, 3, 5, 5, 1e-5, 0.9), |
| 18 | + (4, 3, 5, 5, 1e-5, 0.9), |
| 19 | + (8, 16, 7, 7, 1e-5, 0.9), |
| 20 | + # Test with different epsilons |
| 21 | + (2, 3, 5, 5, 1e-3, 0.9), |
| 22 | + (2, 3, 5, 5, 1e-7, 0.9), |
| 23 | + # Test with different momentums |
| 24 | + (2, 3, 5, 5, 1e-5, 0.1), |
| 25 | + (2, 3, 5, 5, 1e-5, 0.99), |
| 26 | + # Test with different spatial dimensions |
| 27 | + (2, 8, 10, 10, 1e-5, 0.9), |
| 28 | + (2, 16, 3, 3, 1e-5, 0.9), |
| 29 | + ], |
| 30 | +) |
| 31 | +def test_batchnorm_onnxruntime(batch_size, channels, height, width, epsilon, momentum): |
| 32 | + """Test BatchNorm against onnxruntime with various batch sizes.""" |
| 33 | + np.random.seed(42) |
| 34 | + torch.manual_seed(42) |
| 35 | + |
| 36 | + # Create input |
| 37 | + X = np.random.randn(batch_size, channels, height, width).astype(np.float32) |
| 38 | + |
| 39 | + # Create BatchNorm parameters |
| 40 | + scale = np.random.randn(channels).astype(np.float32) |
| 41 | + bias = np.random.randn(channels).astype(np.float32) |
| 42 | + mean = np.random.randn(channels).astype(np.float32) |
| 43 | + var = np.abs(np.random.randn(channels).astype(np.float32)) + 0.1 # Ensure positive |
| 44 | + |
| 45 | + # Create ONNX graph with BatchNormalization node |
| 46 | + input_tensor = helper.make_tensor_value_info( |
| 47 | + "X", TensorProto.FLOAT, [batch_size, channels, height, width] |
| 48 | + ) |
| 49 | + output_tensor = helper.make_tensor_value_info( |
| 50 | + "Y", TensorProto.FLOAT, [batch_size, channels, height, width] |
| 51 | + ) |
| 52 | + |
| 53 | + scale_init = helper.make_tensor( |
| 54 | + "scale", TensorProto.FLOAT, [channels], scale.tolist() |
| 55 | + ) |
| 56 | + bias_init = helper.make_tensor("B", TensorProto.FLOAT, [channels], bias.tolist()) |
| 57 | + mean_init = helper.make_tensor("mean", TensorProto.FLOAT, [channels], mean.tolist()) |
| 58 | + var_init = helper.make_tensor("var", TensorProto.FLOAT, [channels], var.tolist()) |
| 59 | + |
| 60 | + bn_node = helper.make_node( |
| 61 | + "BatchNormalization", |
| 62 | + inputs=["X", "scale", "B", "mean", "var"], |
| 63 | + outputs=["Y"], |
| 64 | + epsilon=epsilon, |
| 65 | + momentum=momentum, |
| 66 | + ) |
| 67 | + |
| 68 | + graph = helper.make_graph( |
| 69 | + [bn_node], |
| 70 | + "batchnorm_test", |
| 71 | + [input_tensor], |
| 72 | + [output_tensor], |
| 73 | + [scale_init, bias_init, mean_init, var_init], |
| 74 | + ) |
| 75 | + |
| 76 | + model = helper.make_model( |
| 77 | + graph, opset_imports=[helper.make_opsetid("", 11)], ir_version=8 |
| 78 | + ) |
| 79 | + |
| 80 | + # Run with onnxruntime |
| 81 | + ort_session = ort.InferenceSession(model.SerializeToString()) |
| 82 | + ort_outputs = ort_session.run(None, {"X": X}) |
| 83 | + expected_Y = ort_outputs[0] |
| 84 | + |
| 85 | + # Convert to PyTorch and run |
| 86 | + o2p_model = ConvertModel(model, experimental=True) |
| 87 | + X_torch = torch.from_numpy(X) |
| 88 | + |
| 89 | + with torch.no_grad(): |
| 90 | + o2p_output = o2p_model(X_torch) |
| 91 | + |
| 92 | + # Compare outputs |
| 93 | + torch.testing.assert_close( |
| 94 | + o2p_output, |
| 95 | + torch.from_numpy(expected_Y), |
| 96 | + rtol=1e-5, |
| 97 | + atol=1e-5, |
| 98 | + msg=f"BatchNorm mismatch for batch_size={batch_size}, channels={channels}", |
| 99 | + ) |
| 100 | + |
| 101 | + |
| 102 | +def test_batchnorm_bias_fix(): |
| 103 | + """Test that the bias parameter is correctly applied (not overwritten by scale).""" |
| 104 | + np.random.seed(42) |
| 105 | + |
| 106 | + batch_size = 2 |
| 107 | + channels = 4 |
| 108 | + height, width = 5, 5 |
| 109 | + |
| 110 | + X = np.random.randn(batch_size, channels, height, width).astype(np.float32) |
| 111 | + |
| 112 | + # Create BatchNorm parameters with distinct scale and bias |
| 113 | + scale = np.ones(channels, dtype=np.float32) * 2.0 # Scale = 2 |
| 114 | + bias = np.ones(channels, dtype=np.float32) * 5.0 # Bias = 5 (should NOT be 2!) |
| 115 | + mean = np.zeros(channels, dtype=np.float32) |
| 116 | + var = np.ones(channels, dtype=np.float32) |
| 117 | + |
| 118 | + # Create ONNX model |
| 119 | + input_tensor = helper.make_tensor_value_info( |
| 120 | + "X", TensorProto.FLOAT, [batch_size, channels, height, width] |
| 121 | + ) |
| 122 | + output_tensor = helper.make_tensor_value_info( |
| 123 | + "Y", TensorProto.FLOAT, [batch_size, channels, height, width] |
| 124 | + ) |
| 125 | + |
| 126 | + scale_init = helper.make_tensor( |
| 127 | + "scale", TensorProto.FLOAT, [channels], scale.tolist() |
| 128 | + ) |
| 129 | + bias_init = helper.make_tensor("B", TensorProto.FLOAT, [channels], bias.tolist()) |
| 130 | + mean_init = helper.make_tensor("mean", TensorProto.FLOAT, [channels], mean.tolist()) |
| 131 | + var_init = helper.make_tensor("var", TensorProto.FLOAT, [channels], var.tolist()) |
| 132 | + |
| 133 | + bn_node = helper.make_node( |
| 134 | + "BatchNormalization", |
| 135 | + inputs=["X", "scale", "B", "mean", "var"], |
| 136 | + outputs=["Y"], |
| 137 | + epsilon=1e-5, |
| 138 | + ) |
| 139 | + |
| 140 | + graph = helper.make_graph( |
| 141 | + [bn_node], |
| 142 | + "batchnorm_bias_test", |
| 143 | + [input_tensor], |
| 144 | + [output_tensor], |
| 145 | + [scale_init, bias_init, mean_init, var_init], |
| 146 | + ) |
| 147 | + |
| 148 | + model = helper.make_model( |
| 149 | + graph, opset_imports=[helper.make_opsetid("", 11)], ir_version=8 |
| 150 | + ) |
| 151 | + |
| 152 | + # Run with onnxruntime (ground truth) |
| 153 | + ort_session = ort.InferenceSession(model.SerializeToString()) |
| 154 | + ort_outputs = ort_session.run(None, {"X": X}) |
| 155 | + expected_Y = ort_outputs[0] |
| 156 | + |
| 157 | + # Convert to PyTorch |
| 158 | + o2p_model = ConvertModel(model, experimental=True) |
| 159 | + X_torch = torch.from_numpy(X) |
| 160 | + |
| 161 | + with torch.no_grad(): |
| 162 | + o2p_output = o2p_model(X_torch) |
| 163 | + |
| 164 | + # If bias was incorrectly set to scale (the bug), outputs would differ |
| 165 | + torch.testing.assert_close( |
| 166 | + o2p_output, |
| 167 | + torch.from_numpy(expected_Y), |
| 168 | + rtol=1e-5, |
| 169 | + atol=1e-5, |
| 170 | + msg="Bias parameter was not correctly applied", |
| 171 | + ) |
| 172 | + |
| 173 | + # Verify that the output includes the bias (should be around 5, not 2) |
| 174 | + # After normalization: (X - 0) / sqrt(1 + eps) * 2 + 5 ≈ X * 2 + 5 |
| 175 | + # The mean should be around 5 (from bias), not 2 (from scale) |
| 176 | + output_mean_per_channel = o2p_output.mean(dim=(0, 2, 3)) |
| 177 | + # The mean should be close to bias (5), not scale (2) |
| 178 | + # Note: This is approximate since X is random |
| 179 | + assert torch.allclose( |
| 180 | + output_mean_per_channel, torch.tensor([5.0] * channels), rtol=1, atol=1 |
| 181 | + ) |
| 182 | + |
| 183 | + |
| 184 | +def test_batchnorm_eval_mode(): |
| 185 | + """Test that BatchNorm uses eval mode (running statistics).""" |
| 186 | + |
| 187 | + channels = 4 |
| 188 | + scale = torch.ones(channels) |
| 189 | + bias = torch.zeros(channels) |
| 190 | + running_mean = torch.randn(channels) |
| 191 | + running_var = torch.abs(torch.randn(channels)) + 0.1 |
| 192 | + |
| 193 | + # Create BatchNormWrapper |
| 194 | + bn_wrapper = BatchNormWrapper([scale, bias, running_mean, running_var]) |
| 195 | + |
| 196 | + # Verify it's in eval mode |
| 197 | + assert not bn_wrapper.bnu.training, "BatchNorm should be in eval mode" |
| 198 | + |
| 199 | + # Test with batch_size > 1 |
| 200 | + X = torch.randn(4, channels, 5, 5) |
| 201 | + |
| 202 | + output = bn_wrapper(X) |
| 203 | + |
| 204 | + # In eval mode, it should use running_mean and running_var, |
| 205 | + # not compute statistics from the current batch |
| 206 | + # Verify output shape |
| 207 | + assert output.shape == X.shape |
| 208 | + |
| 209 | + |
| 210 | +def test_batchnorm_formula(): |
| 211 | + """Test that BatchNorm implements the correct formula.""" |
| 212 | + batch_size = 2 |
| 213 | + channels = 3 |
| 214 | + height, width = 4, 4 |
| 215 | + |
| 216 | + X = torch.randn(batch_size, channels, height, width) |
| 217 | + |
| 218 | + scale = torch.ones(channels) * 2.0 |
| 219 | + bias = torch.ones(channels) * 3.0 |
| 220 | + mean = torch.zeros(channels) |
| 221 | + var = torch.ones(channels) |
| 222 | + epsilon = 1e-5 |
| 223 | + |
| 224 | + # Manual computation: Y = scale * (X - mean) / sqrt(var + epsilon) + bias |
| 225 | + expected = scale.view(1, -1, 1, 1) * (X - mean.view(1, -1, 1, 1)) / torch.sqrt( |
| 226 | + var.view(1, -1, 1, 1) + epsilon |
| 227 | + ) + bias.view(1, -1, 1, 1) |
| 228 | + |
| 229 | + # Using BatchNormWrapper |
| 230 | + |
| 231 | + bn_wrapper = BatchNormWrapper([scale, bias, mean, var], eps=epsilon) |
| 232 | + output = bn_wrapper(X) |
| 233 | + |
| 234 | + torch.testing.assert_close(output, expected, rtol=1e-5, atol=1e-5) |
| 235 | + |
| 236 | + |
| 237 | +@pytest.mark.parametrize("batch_size", [1, 2, 4, 8]) |
| 238 | +def test_batchnorm_consistency_across_batch_sizes(batch_size): |
| 239 | + """Test that BatchNorm produces consistent results across different batch sizes.""" |
| 240 | + np.random.seed(42) |
| 241 | + torch.manual_seed(42) |
| 242 | + |
| 243 | + channels = 8 |
| 244 | + height, width = 6, 6 |
| 245 | + |
| 246 | + # Create a deterministic input pattern |
| 247 | + X = np.random.randn(batch_size, channels, height, width).astype(np.float32) |
| 248 | + |
| 249 | + scale = np.random.randn(channels).astype(np.float32) |
| 250 | + bias = np.random.randn(channels).astype(np.float32) |
| 251 | + mean = np.random.randn(channels).astype(np.float32) |
| 252 | + var = np.abs(np.random.randn(channels).astype(np.float32)) + 0.1 |
| 253 | + |
| 254 | + # Create ONNX model |
| 255 | + input_tensor = helper.make_tensor_value_info( |
| 256 | + "X", TensorProto.FLOAT, [batch_size, channels, height, width] |
| 257 | + ) |
| 258 | + output_tensor = helper.make_tensor_value_info( |
| 259 | + "Y", TensorProto.FLOAT, [batch_size, channels, height, width] |
| 260 | + ) |
| 261 | + |
| 262 | + scale_init = helper.make_tensor( |
| 263 | + "scale", TensorProto.FLOAT, [channels], scale.tolist() |
| 264 | + ) |
| 265 | + bias_init = helper.make_tensor("B", TensorProto.FLOAT, [channels], bias.tolist()) |
| 266 | + mean_init = helper.make_tensor("mean", TensorProto.FLOAT, [channels], mean.tolist()) |
| 267 | + var_init = helper.make_tensor("var", TensorProto.FLOAT, [channels], var.tolist()) |
| 268 | + |
| 269 | + bn_node = helper.make_node( |
| 270 | + "BatchNormalization", |
| 271 | + inputs=["X", "scale", "B", "mean", "var"], |
| 272 | + outputs=["Y"], |
| 273 | + epsilon=1e-5, |
| 274 | + ) |
| 275 | + |
| 276 | + graph = helper.make_graph( |
| 277 | + [bn_node], |
| 278 | + "batchnorm_consistency_test", |
| 279 | + [input_tensor], |
| 280 | + [output_tensor], |
| 281 | + [scale_init, bias_init, mean_init, var_init], |
| 282 | + ) |
| 283 | + |
| 284 | + model = helper.make_model( |
| 285 | + graph, opset_imports=[helper.make_opsetid("", 11)], ir_version=8 |
| 286 | + ) |
| 287 | + |
| 288 | + # Run with onnxruntime |
| 289 | + ort_session = ort.InferenceSession(model.SerializeToString()) |
| 290 | + ort_outputs = ort_session.run(None, {"X": X}) |
| 291 | + expected_Y = ort_outputs[0] |
| 292 | + |
| 293 | + # Convert to PyTorch |
| 294 | + o2p_model = ConvertModel(model, experimental=True) |
| 295 | + X_torch = torch.from_numpy(X) |
| 296 | + |
| 297 | + with torch.no_grad(): |
| 298 | + o2p_output = o2p_model(X_torch) |
| 299 | + |
| 300 | + # Should match onnxruntime regardless of batch size |
| 301 | + torch.testing.assert_close( |
| 302 | + o2p_output, |
| 303 | + torch.from_numpy(expected_Y), |
| 304 | + rtol=1e-5, |
| 305 | + atol=1e-5, |
| 306 | + msg=f"BatchNorm failed for batch_size={batch_size}", |
| 307 | + ) |
0 commit comments