|
| 1 | +import numpy as np |
| 2 | +import onnxruntime as ort |
| 3 | +import pytest |
| 4 | +import torch |
| 5 | +from onnx import helper, TensorProto |
| 6 | + |
| 7 | +from onnx2pytorch.convert import ConvertModel |
| 8 | +from onnx2pytorch.operations.reducesumsquare import ReduceSumSquare |
| 9 | + |
| 10 | + |
| 11 | +@pytest.mark.parametrize( |
| 12 | + "input_shape,axes,keepdims", |
| 13 | + [ |
| 14 | + # Test with different axes |
| 15 | + ([3, 4, 5], [0], 1), |
| 16 | + ([3, 4, 5], [1], 1), |
| 17 | + ([3, 4, 5], [2], 1), |
| 18 | + ([3, 4, 5], [-1], 1), |
| 19 | + # Test with multiple axes |
| 20 | + ([3, 4, 5], [0, 1], 1), |
| 21 | + ([3, 4, 5], [1, 2], 1), |
| 22 | + ([3, 4, 5], [0, 2], 1), |
| 23 | + # Test with keepdims=0 |
| 24 | + ([3, 4, 5], [1], 0), |
| 25 | + ([3, 4, 5], [0, 2], 0), |
| 26 | + # Test with all axes (None means reduce all) |
| 27 | + ([3, 4, 5], None, 1), |
| 28 | + ([3, 4, 5], None, 0), |
| 29 | + # Test 2D inputs |
| 30 | + ([5, 10], [0], 1), |
| 31 | + ([5, 10], [1], 1), |
| 32 | + ([5, 10], None, 1), |
| 33 | + # Test 1D inputs |
| 34 | + ([10], [0], 1), |
| 35 | + ([10], None, 1), |
| 36 | + ], |
| 37 | +) |
| 38 | +def test_reducesumsquare_onnxruntime(input_shape, axes, keepdims): |
| 39 | + """Test ReduceSumSquare against onnxruntime.""" |
| 40 | + np.random.seed(42) |
| 41 | + |
| 42 | + # Create input |
| 43 | + X = np.random.randn(*input_shape).astype(np.float32) |
| 44 | + |
| 45 | + # Create ONNX graph with ReduceSumSquare node |
| 46 | + input_tensor = helper.make_tensor_value_info("X", TensorProto.FLOAT, input_shape) |
| 47 | + output_tensor = helper.make_tensor_value_info("Y", TensorProto.FLOAT, None) |
| 48 | + |
| 49 | + # Use axes as attribute (supported in all opset versions) |
| 50 | + node_attrs = {"keepdims": keepdims} |
| 51 | + if axes is not None: |
| 52 | + node_attrs["axes"] = axes |
| 53 | + |
| 54 | + reducesumsquare_node = helper.make_node( |
| 55 | + "ReduceSumSquare", |
| 56 | + inputs=["X"], |
| 57 | + outputs=["Y"], |
| 58 | + **node_attrs, |
| 59 | + ) |
| 60 | + |
| 61 | + graph = helper.make_graph( |
| 62 | + [reducesumsquare_node], |
| 63 | + "reducesumsquare_test", |
| 64 | + [input_tensor], |
| 65 | + [output_tensor], |
| 66 | + ) |
| 67 | + |
| 68 | + model = helper.make_model( |
| 69 | + graph, opset_imports=[helper.make_opsetid("", 11)], ir_version=8 |
| 70 | + ) |
| 71 | + |
| 72 | + # Run with onnxruntime |
| 73 | + ort_session = ort.InferenceSession(model.SerializeToString()) |
| 74 | + ort_outputs = ort_session.run(None, {"X": X}) |
| 75 | + expected_Y = ort_outputs[0] |
| 76 | + |
| 77 | + # Convert to PyTorch and run |
| 78 | + o2p_model = ConvertModel(model, experimental=True) |
| 79 | + X_torch = torch.from_numpy(X) |
| 80 | + |
| 81 | + with torch.no_grad(): |
| 82 | + o2p_output = o2p_model(X_torch) |
| 83 | + |
| 84 | + # Compare outputs |
| 85 | + torch.testing.assert_close( |
| 86 | + o2p_output, |
| 87 | + torch.from_numpy(expected_Y), |
| 88 | + rtol=1e-5, |
| 89 | + atol=1e-5, |
| 90 | + ) |
| 91 | + |
| 92 | + |
| 93 | +def test_reducesumsquare_formula(): |
| 94 | + """Test that ReduceSumSquare implements sum(x^2).""" |
| 95 | + X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) |
| 96 | + |
| 97 | + # Manual computation |
| 98 | + expected_all = torch.sum(X**2) |
| 99 | + expected_axis0 = torch.sum(X**2, dim=0, keepdim=True) |
| 100 | + expected_axis1 = torch.sum(X**2, dim=1, keepdim=True) |
| 101 | + |
| 102 | + # Test reduce all |
| 103 | + |
| 104 | + op_all = ReduceSumSquare(opset_version=13, dim=None, keepdim=True) |
| 105 | + result_all = op_all(X) |
| 106 | + torch.testing.assert_close( |
| 107 | + result_all, expected_all.view(1, 1), rtol=1e-6, atol=1e-6 |
| 108 | + ) |
| 109 | + |
| 110 | + # Test reduce axis 0 |
| 111 | + op_axis0 = ReduceSumSquare(opset_version=11, dim=0, keepdim=True) |
| 112 | + result_axis0 = op_axis0(X) |
| 113 | + torch.testing.assert_close(result_axis0, expected_axis0, rtol=1e-6, atol=1e-6) |
| 114 | + |
| 115 | + # Test reduce axis 1 |
| 116 | + op_axis1 = ReduceSumSquare(opset_version=11, dim=1, keepdim=True) |
| 117 | + result_axis1 = op_axis1(X) |
| 118 | + torch.testing.assert_close(result_axis1, expected_axis1, rtol=1e-6, atol=1e-6) |
| 119 | + |
| 120 | + |
| 121 | +def test_reducesumsquare_keepdims(): |
| 122 | + """Test keepdims parameter.""" |
| 123 | + X = torch.randn(2, 3, 4) |
| 124 | + |
| 125 | + # With keepdims=True |
| 126 | + op_keep = ReduceSumSquare(opset_version=11, dim=1, keepdim=True) |
| 127 | + result_keep = op_keep(X) |
| 128 | + assert result_keep.shape == (2, 1, 4) |
| 129 | + |
| 130 | + # With keepdims=False |
| 131 | + op_no_keep = ReduceSumSquare(opset_version=11, dim=1, keepdim=False) |
| 132 | + result_no_keep = op_no_keep(X) |
| 133 | + assert result_no_keep.shape == (2, 4) |
| 134 | + |
| 135 | + # Values should be the same (just different shapes) |
| 136 | + torch.testing.assert_close( |
| 137 | + result_keep.squeeze(1), result_no_keep, rtol=1e-6, atol=1e-6 |
| 138 | + ) |
| 139 | + |
| 140 | + |
| 141 | +def test_reducesumsquare_noop_with_empty_axes(): |
| 142 | + """Test noop_with_empty_axes parameter.""" |
| 143 | + X = torch.randn(2, 3, 4) |
| 144 | + |
| 145 | + # With noop_with_empty_axes=True and no axes, should return input unchanged |
| 146 | + op_noop = ReduceSumSquare( |
| 147 | + opset_version=13, dim=None, keepdim=True, noop_with_empty_axes=True |
| 148 | + ) |
| 149 | + result_noop = op_noop(X) |
| 150 | + torch.testing.assert_close(result_noop, X, rtol=1e-6, atol=1e-6) |
| 151 | + |
| 152 | + # With noop_with_empty_axes=False and no axes, should reduce all |
| 153 | + op_reduce = ReduceSumSquare( |
| 154 | + opset_version=13, dim=None, keepdim=True, noop_with_empty_axes=False |
| 155 | + ) |
| 156 | + result_reduce = op_reduce(X) |
| 157 | + expected = torch.sum(X**2).view(1, 1, 1) |
| 158 | + torch.testing.assert_close(result_reduce, expected, rtol=1e-6, atol=1e-6) |
| 159 | + |
| 160 | + |
| 161 | +def test_reducesumsquare_with_axes_input(): |
| 162 | + """Test with axes as an input tensor (for frameworks that support it).""" |
| 163 | + X = torch.randn(2, 3, 4) |
| 164 | + |
| 165 | + # Opset 13+ supports axes as input |
| 166 | + op = ReduceSumSquare(opset_version=13, dim=None, keepdim=True) |
| 167 | + |
| 168 | + # Provide axes as a tensor |
| 169 | + axes = torch.tensor([0, 2], dtype=torch.int64) |
| 170 | + result = op(X, axes) |
| 171 | + |
| 172 | + # Expected: reduce along axes 0 and 2 |
| 173 | + expected = torch.sum(X**2, dim=(0, 2), keepdim=True) |
| 174 | + torch.testing.assert_close(result, expected, rtol=1e-6, atol=1e-6) |
| 175 | + assert result.shape == (1, 3, 1) |
| 176 | + |
| 177 | + |
| 178 | +def test_reducesumsquare_vs_reducesum_square(): |
| 179 | + """Test that ReduceSumSquare(x) == ReduceSum(Square(x)).""" |
| 180 | + X = torch.randn(3, 4, 5) |
| 181 | + |
| 182 | + # ReduceSumSquare |
| 183 | + op_sumsquare = ReduceSumSquare(opset_version=11, dim=1, keepdim=True) |
| 184 | + result_sumsquare = op_sumsquare(X) |
| 185 | + |
| 186 | + # ReduceSum(Square(x)) |
| 187 | + result_square_sum = torch.sum(X**2, dim=1, keepdim=True) |
| 188 | + |
| 189 | + torch.testing.assert_close( |
| 190 | + result_sumsquare, result_square_sum, rtol=1e-6, atol=1e-6 |
| 191 | + ) |
| 192 | + |
| 193 | + |
| 194 | +def test_reducesumsquare_negative_axis(): |
| 195 | + """Test with negative axis values.""" |
| 196 | + X = torch.randn(2, 3, 4) |
| 197 | + |
| 198 | + # axis=-1 should be equivalent to axis=2 |
| 199 | + op_neg = ReduceSumSquare(opset_version=11, dim=-1, keepdim=True) |
| 200 | + result_neg = op_neg(X) |
| 201 | + |
| 202 | + op_pos = ReduceSumSquare(opset_version=11, dim=2, keepdim=True) |
| 203 | + result_pos = op_pos(X) |
| 204 | + |
| 205 | + torch.testing.assert_close(result_neg, result_pos, rtol=1e-6, atol=1e-6) |
| 206 | + |
| 207 | + |
| 208 | +def test_reducesumsquare_gradient(): |
| 209 | + """Test that gradients flow correctly through ReduceSumSquare.""" |
| 210 | + X = torch.randn(2, 3, 4, requires_grad=True) |
| 211 | + |
| 212 | + op = ReduceSumSquare(opset_version=11, dim=1, keepdim=True) |
| 213 | + result = op(X) |
| 214 | + |
| 215 | + # Compute gradient |
| 216 | + loss = result.sum() |
| 217 | + loss.backward() |
| 218 | + |
| 219 | + # Gradient of sum(x^2) with respect to x is 2x |
| 220 | + # After summing along dim=1, gradient should be 2x broadcast along dim=1 |
| 221 | + expected_grad = 2 * X |
| 222 | + |
| 223 | + assert X.grad is not None |
| 224 | + torch.testing.assert_close(X.grad, expected_grad, rtol=1e-5, atol=1e-5) |
0 commit comments