|
1 | 1 | #include "clib.h" |
2 | 2 | #include "fidimag_random.h" |
3 | 3 |
|
4 | | -inline double dot(double a[3], double b[3]){ |
5 | | - return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]; |
| 4 | +inline double dot(double a[3], double b[3]) { |
| 5 | + return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; |
6 | 6 | } |
7 | 7 |
|
8 | | -//the bulk DMI for a cuboid mesh |
9 | | -inline double dmi_energy_site(double a[3], double b[3], int i){ |
10 | | - double res=0; |
11 | | - switch (i) { |
12 | | - case 0: |
13 | | - res=-(a[1] * b[2] - a[2] * b[1]);break;//-x |
14 | | - case 1: |
15 | | - res= (a[1] * b[2] - a[2] * b[1]); break;//+x |
16 | | - case 2: |
17 | | - res = -(a[2] * b[0] - a[0] * b[2]); break;//-y |
18 | | - case 3: |
19 | | - res = (a[2] * b[0] - a[0] * b[2]); break;//+y |
20 | | - case 4: |
21 | | - res = -(a[0] * b[1] - a[1] * b[0]); break;//-z |
22 | | - case 5: |
23 | | - res = (a[0] * b[1] - a[1] * b[0]); break;//+z |
24 | | - default: |
25 | | - break; |
26 | | - } |
27 | | - return res; |
| 8 | +// helper function to compute the bulk DMI for a cuboid mesh with neighbour i |
| 9 | +inline double dmi_energy_site(double a[3], double b[3], int i) { |
| 10 | + double res = 0; |
| 11 | + switch (i) { |
| 12 | + case 0: |
| 13 | + res = -(a[1] * b[2] - a[2] * b[1]); |
| 14 | + break; //-x |
| 15 | + case 1: |
| 16 | + res = (a[1] * b[2] - a[2] * b[1]); |
| 17 | + break; //+x |
| 18 | + case 2: |
| 19 | + res = -(a[2] * b[0] - a[0] * b[2]); |
| 20 | + break; //-y |
| 21 | + case 3: |
| 22 | + res = (a[2] * b[0] - a[0] * b[2]); |
| 23 | + break; //+y |
| 24 | + case 4: |
| 25 | + res = -(a[0] * b[1] - a[1] * b[0]); |
| 26 | + break; //-z |
| 27 | + case 5: |
| 28 | + res = (a[0] * b[1] - a[1] * b[0]); |
| 29 | + break; //+z |
| 30 | + default: |
| 31 | + break; |
| 32 | + } |
| 33 | + return res; |
28 | 34 | } |
29 | 35 |
|
30 | | -//note that this DMI only works for a 2d hexagnoal mesh. |
31 | | -inline double dmi_energy_hexagnoal_site(double a[3], double b[3], int i){ |
32 | | - double res=0; |
33 | | - switch (i) { |
34 | | - case 0: |
35 | | - res=(a[1] * b[2] - a[2] * b[1]);break;//+x |
36 | | - case 1: |
37 | | - res=-(a[1] * b[2] - a[2] * b[1]); break;//-x |
38 | | - case 2: |
39 | | - res=0.5*(a[1] * b[2] - a[2] * b[1])+0.86602540378443864676*(a[2] * b[0] - a[0] * b[2]); break;//top right, r={1/2, sqrt(3)/2, 0} |
40 | | - case 3: |
41 | | - res=-0.5*(a[1] * b[2] - a[2] * b[1])-0.86602540378443864676*(a[2] * b[0] - a[0] * b[2]); break;//bottom left, r={-1/2, -sqrt(3)/2, 0} |
42 | | - case 4: |
43 | | - res=-0.5*(a[1] * b[2] - a[2] * b[1])+0.86602540378443864676*(a[2] * b[0] - a[0] * b[2]); break;//top left, r={-1/2, sqrt(3)/2, 0} |
44 | | - case 5: |
45 | | - res=0.5*(a[1] * b[2] - a[2] * b[1])-0.86602540378443864676*(a[2] * b[0] - a[0] * b[2]); break;//bottom right, r={1/2, -sqrt(3)/2, 0} |
46 | | - default: |
47 | | - break; |
48 | | - } |
49 | | - return res; |
| 36 | +// note that this DMI only works for a 2d hexagonal mesh. |
| 37 | +inline double dmi_energy_hexagonal_site(double a[3], double b[3], int i) { |
| 38 | + double res = 0; |
| 39 | + switch (i) { |
| 40 | + case 0: |
| 41 | + res = (a[1] * b[2] - a[2] * b[1]); |
| 42 | + break; //+x |
| 43 | + case 1: |
| 44 | + res = -(a[1] * b[2] - a[2] * b[1]); |
| 45 | + break; //-x |
| 46 | + case 2: |
| 47 | + res = 0.5 * (a[1] * b[2] - a[2] * b[1]) + |
| 48 | + 0.86602540378443864676 * (a[2] * b[0] - a[0] * b[2]); |
| 49 | + break; // top right, r={1/2, sqrt(3)/2, 0} |
| 50 | + case 3: |
| 51 | + res = -0.5 * (a[1] * b[2] - a[2] * b[1]) - |
| 52 | + 0.86602540378443864676 * (a[2] * b[0] - a[0] * b[2]); |
| 53 | + break; // bottom left, r={-1/2, -sqrt(3)/2, 0} |
| 54 | + case 4: |
| 55 | + res = -0.5 * (a[1] * b[2] - a[2] * b[1]) + |
| 56 | + 0.86602540378443864676 * (a[2] * b[0] - a[0] * b[2]); |
| 57 | + break; // top left, r={-1/2, sqrt(3)/2, 0} |
| 58 | + case 5: |
| 59 | + res = 0.5 * (a[1] * b[2] - a[2] * b[1]) - |
| 60 | + 0.86602540378443864676 * (a[2] * b[0] - a[0] * b[2]); |
| 61 | + break; // bottom right, r={1/2, -sqrt(3)/2, 0} |
| 62 | + default: |
| 63 | + break; |
| 64 | + } |
| 65 | + return res; |
50 | 66 | } |
51 | 67 |
|
| 68 | +// helper function to compute the cubic energy |
| 69 | +inline double cubic_energy_site(double *m, double Kc) { |
52 | 70 |
|
53 | | -//helper function to compute the cubic energy |
54 | | -inline double cubic_energy_site(double *m, double Kc){ |
| 71 | + double mx2 = m[0] * m[0]; |
| 72 | + double my2 = m[1] * m[1]; |
| 73 | + double mz2 = m[2] * m[2]; |
55 | 74 |
|
56 | | - double mx2 = m[0]*m[0]; |
57 | | - double my2 = m[1]*m[1]; |
58 | | - double mz2 = m[2]*m[2]; |
59 | | - |
60 | | - return -Kc*(mx2*mx2+my2*my2+mz2*mz2); |
61 | | - |
| 75 | + return -Kc * (mx2 * mx2 + my2 * my2 + mz2 * mz2); |
62 | 76 | } |
63 | 77 |
|
64 | | -double compute_deltaE_anisotropy(double *spin, double *new_spin, double *h, double Kc, int i){ |
| 78 | +double compute_deltaE_anisotropy(double *spin, double *new_spin, double *h, |
| 79 | + double Kc, int i, int new_i) { |
| 80 | + |
| 81 | + double energy1 = -dot(&spin[3 * i], &h[3 * i]); // zeeman energy |
| 82 | + double energy2 = -dot(&new_spin[3 * new_i], &h[3 * i]); |
65 | 83 |
|
66 | | - double energy1 = -dot(&spin[3*i], &h[3*i]); //zeeman energy |
67 | | - double energy2 = -dot(&new_spin[3*i], &h[3*i]); |
68 | | - |
69 | | - energy1 += cubic_energy_site(&spin[3*i], Kc); //cubic anisotropy energy |
70 | | - energy2 += cubic_energy_site(&new_spin[3*i], Kc); |
71 | | - |
72 | | - return energy2-energy1; |
| 84 | + energy1 += cubic_energy_site(&spin[3 * i], Kc); // cubic anisotropy energy |
| 85 | + energy2 += cubic_energy_site(&new_spin[3 * new_i], Kc); |
73 | 86 |
|
| 87 | + return energy2 - energy1; |
74 | 88 | } |
75 | 89 |
|
76 | 90 | /* |
77 | 91 | * n is the total spin number |
78 | 92 | */ |
79 | | -double compute_deltaE_exchange_DMI_hexagnoal(double *spin, double *new_spin, int *ngbs, int n_ngbs, double J, double D, int i){ |
80 | | - |
81 | | - int id_nn = n_ngbs * i; |
82 | | - double energy1=0, energy2=0; |
83 | | - |
84 | | - for (int j = 0; j < 6; j++) { |
85 | | - int k = ngbs[id_nn + j]; |
86 | | - if (k >= 0) { |
87 | | - energy1 -= J*dot(&spin[3*i], &spin[3*k]);//exchange energy |
88 | | - energy1 += D*dmi_energy_hexagnoal_site(&spin[3*i], &spin[3*k], j); //DMI energy |
89 | | - |
90 | | - energy2 -= J*dot(&new_spin[3*i], &spin[3*k]); |
91 | | - energy2 += D*dmi_energy_hexagnoal_site(&new_spin[3*i], &spin[3*k], j); |
92 | | - |
93 | | - } |
| 93 | +double compute_deltaE_exchange_DMI_hexagonal(double *spin, double *new_spin, |
| 94 | + int *ngbs, int n_ngbs, double J, double D, |
| 95 | + int i, int new_i) { |
| 96 | + |
| 97 | + int id_nn = n_ngbs * i; |
| 98 | + double energy1 = 0, energy2 = 0; |
| 99 | + |
| 100 | + for (int j = 0; j < 6; j++) { |
| 101 | + int k = ngbs[id_nn + j]; |
| 102 | + if (k >= 0) { |
| 103 | + energy1 -= J * dot(&spin[3 * i], &spin[3 * k]); // exchange energy |
| 104 | + energy1 += D * dmi_energy_hexagonal_site(&spin[3 * i], &spin[3 * k], |
| 105 | + j); // DMI energy |
| 106 | + |
| 107 | + energy2 -= J * dot(&new_spin[3 * new_i], &spin[3 * k]); |
| 108 | + energy2 += D * dmi_energy_hexagonal_site(&new_spin[3 * new_i], |
| 109 | + &spin[3 * k], j); // DMI energy |
94 | 110 | } |
| 111 | + } |
95 | 112 |
|
96 | | - return energy2-energy1; |
97 | | - |
| 113 | + return energy2 - energy1; |
98 | 114 | } |
99 | 115 |
|
100 | | -double compute_deltaE_exchange_DMI(double *spin, double *new_spin, int *ngbs, int *nngbs, int n_ngbs, double J, double J1, double D, double D1, int i){ |
101 | | - |
102 | | - int id_nn = n_ngbs * i; |
103 | | - double energy1=0, energy2=0; |
104 | | - |
105 | | - for (int j = 0; j < 6; j++) { |
106 | | - int k = ngbs[id_nn + j]; |
107 | | - if (k >= 0) { |
108 | | - energy1 -= J*dot(&spin[3*i], &spin[3*k]) ;//exchange energy |
109 | | - energy1 += D*dmi_energy_site(&spin[3*i], &spin[3*k], j); //DMI energy |
110 | | - |
111 | | - energy2 -= J*dot(&new_spin[3*i], &spin[3*k]); |
112 | | - energy2 += D*dmi_energy_site(&new_spin[3*i], &spin[3*k], j); |
113 | | - } |
114 | | - k = nngbs[id_nn + j]; |
115 | | - if (k >= 0) { |
116 | | - energy1 -= J1*dot(&spin[3*i], &spin[3*k]) ;//exchange energy |
117 | | - energy1 += D1*dmi_energy_site(&spin[3*i], &spin[3*k], j); //DMI energy |
118 | | - |
119 | | - energy2 -= J1*dot(&new_spin[3*i], &spin[3*k]); |
120 | | - energy2 += D1*dmi_energy_site(&new_spin[3*i], &spin[3*k], j); |
121 | | - } |
122 | | - |
| 116 | +double compute_deltaE_exchange_DMI(double *spin, double *new_spin, int *ngbs, |
| 117 | + int *nngbs, int n_ngbs, double J, double J1, double D, |
| 118 | + double D1, int i, int new_i) { |
| 119 | + |
| 120 | + int id_nn = n_ngbs * i; |
| 121 | + double energy1 = 0, energy2 = 0; |
| 122 | + |
| 123 | + for (int j = 0; j < 6; j++) { |
| 124 | + int k = ngbs[id_nn + j]; |
| 125 | + if (k >= 0) { |
| 126 | + energy1 -= J * dot(&spin[3 * i], &spin[3 * k]); // exchange energy |
| 127 | + energy1 += D * dmi_energy_site(&spin[3 * i], &spin[3 * k], j); // DMI |
| 128 | + |
| 129 | + energy2 -= J * dot(&new_spin[3 * new_i], &spin[3 * k]); |
| 130 | + energy2 += D * dmi_energy_site(&new_spin[3 * new_i], &spin[3 * k], j); |
123 | 131 | } |
124 | | - |
125 | | - return energy2-energy1; |
126 | | - |
| 132 | + k = nngbs[id_nn + j]; |
| 133 | + if (k >= 0) { |
| 134 | + energy1 -= J1 * dot(&spin[3 * i], &spin[3 * k]); // exchange energy |
| 135 | + energy1 += D1 * dmi_energy_site(&spin[3 * i], &spin[3 * k], j); // DMI |
| 136 | + |
| 137 | + energy2 -= J1 * dot(&new_spin[3 * new_i], &spin[3 * k]); |
| 138 | + energy2 += D1 * dmi_energy_site(&new_spin[3 * new_i], &spin[3 * k], j); |
| 139 | + } |
| 140 | + } |
| 141 | + |
| 142 | + return energy2 - energy1; |
127 | 143 | } |
128 | 144 |
|
| 145 | +void run_step_mc(mt19937_state *state, double *spin, double *new_spin, |
| 146 | + int *ngbs, int *nngbs, int n_ngbs, double J, double J1, double D, |
| 147 | + double D1, double *h, double Kc, int n, double T, |
| 148 | + int hexagonal_mesh) { |
129 | 149 |
|
130 | | -void run_step_mc(mt19937_state *state, double *spin, double *new_spin, int *ngbs, int *nngbs, int n_ngbs, double J, double J1, double D, double D1, double *h, double Kc, int n, double T, int hexagnoal_mesh){ |
131 | | - |
132 | | - double delta_E, r; |
133 | | - int update=0; |
134 | | - |
135 | | - uniform_random_sphere(state, new_spin, n); |
136 | | - |
137 | | - for(int i=0;i<n;i++){ |
138 | | - |
139 | | - int index = rand_int_n(state, n); |
140 | | - int j=3*index; |
141 | | - |
142 | | - delta_E = compute_deltaE_anisotropy(&spin[0], &new_spin[0], &h[0], Kc, index); |
143 | | - |
144 | | - if(hexagnoal_mesh){ |
145 | | - delta_E += compute_deltaE_exchange_DMI_hexagnoal(&spin[0], &new_spin[0], &ngbs[0], n_ngbs, J, D, index); |
146 | | - }else{ |
147 | | - delta_E += compute_deltaE_exchange_DMI(&spin[0], &new_spin[0], &ngbs[0], &nngbs[0], n_ngbs, J, J1, D, D1, index); |
148 | | - } |
149 | | - |
150 | | - |
151 | | - if (delta_E<0) {update=1;} |
152 | | - else{ |
153 | | - r = random_double_half_open(state); |
154 | | - if (r<exp(-delta_E/T)) update=1; |
155 | | - } |
156 | | - |
157 | | - if(update){ |
158 | | - spin[j]=new_spin[j]; |
159 | | - spin[j+1]=new_spin[j+1]; |
160 | | - spin[j+2]=new_spin[j+2]; |
161 | | - } |
162 | | - |
163 | | - update = 0; |
164 | | - |
| 150 | + double delta_E, r; |
| 151 | + int update = 0; |
| 152 | + |
| 153 | + uniform_random_sphere(state, new_spin, n); |
| 154 | + |
| 155 | + for (int new_i = 0; new_i < n; new_i++) { |
| 156 | + |
| 157 | + int i = rand_int_n(state, n); |
| 158 | + int j = 3 * i; |
| 159 | + int new_j = 3 * new_i; |
| 160 | + |
| 161 | + delta_E = |
| 162 | + compute_deltaE_anisotropy(&spin[0], &new_spin[0], &h[0], Kc, i, new_i); |
| 163 | + |
| 164 | + if (hexagonal_mesh) { |
| 165 | + delta_E += compute_deltaE_exchange_DMI_hexagonal( |
| 166 | + &spin[0], &new_spin[0], &ngbs[0], n_ngbs, J, D, i, new_i); |
| 167 | + } else { |
| 168 | + delta_E += compute_deltaE_exchange_DMI(&spin[0], &new_spin[0], &ngbs[0], n_ngbs, |
| 169 | + &nngbs[0], J, J1, D, D1, i, new_i); |
165 | 170 | } |
166 | 171 |
|
| 172 | + update = 0; |
| 173 | + |
| 174 | + if (delta_E < 0) { |
| 175 | + update = 1; |
| 176 | + } else { |
| 177 | + r = random_double_half_open(state); |
| 178 | + if (r < exp(-delta_E / T)) |
| 179 | + update = 1; |
| 180 | + } |
| 181 | + |
| 182 | + if (update) { |
| 183 | + spin[j] = new_spin[new_j]; |
| 184 | + spin[j + 1] = new_spin[new_j + 1]; |
| 185 | + spin[j + 2] = new_spin[new_j + 2]; |
| 186 | + } |
| 187 | + } |
167 | 188 | } |
0 commit comments