@@ -176,7 +176,7 @@ For bulk materials :math:`\vec{D}_{ij} = D \vec{r}_{ij}` and for interfacial DMI
176176In the continuum limit the bulk DMI energy is written as
177177
178178.. math ::
179- E_{dmi } = \int _\Omega D_a \vec {m} \cdot (\nabla \times \vec {m}) dx
179+ E_{\text {DMI} } = \int _\Omega D_a \vec {m} \cdot (\nabla \times \vec {m}) dx
180180
181181 where :math: `D_a = -D/a^2 ` and the effective field is
182182
@@ -188,15 +188,25 @@ where :math:`D_a = -D/a^2` and the effective field is
188188 For the interfacial case, the effective field becomes,
189189
190190.. math ::
191- \vec {H}=\frac {2 D}{M_s a^2 } (\vec {e}_x \times \frac {\partial \vec {m}}{\partial y} - \vec {e}_y \times \frac {\partial \vec {m}}{\partial x} )
191+ \vec {H}=\frac {2 D}{M_s a^2 } (\hat {x} \times \frac {\partial \vec {m}}{\partial y} - \hat {y} \times \frac {\partial \vec {m}}{\partial x} )
192192
193193 Compared with the effective field [PRB 88 184422]
194194
195195.. math ::
196- \vec {H}=\frac {2 D_a}{\mu _0 M_s} ((\nabla \cdot \vec {m}) \vec {e}_z - \nabla m_z)
196+ \vec {H}=\frac {2 D_a}{\mu _0 M_s} ((\nabla \cdot \vec {m}) \hat {z} - \nabla m_z)
197197
198198 where :math: `D_a = D/a^2 `. Notice that there is no negative sign for the interfacial case.
199199
200+ In the micromagnetic code, it is also implemented DMI for materials with
201+ :math: `D_{2 d}` symmetry. The energy of this interaction reads
202+
203+ .. math ::
204+ E_{\text {DMI}} = D_a \vec {m} \cdot \left (
205+ \frac {\partial \vec {m}}{\partial x} \times \hat {x}
206+ - \frac {\partial \vec {m}}{\partial y} \times \hat {y}
207+ \right )
208+
209+ where :math: `D_a` is the DMI constant.
200210
201211.. Similar to the exchange case, the effective field in the continuum case
202212.. can be computed by the same codes with
0 commit comments