@@ -20,7 +20,6 @@ fn test_booles_integration_1()
2020
2121 //simple integration for x, known to be x*x, expect a value of ~4.00
2222 let val = integrator. get_single ( & func, & integration_limit) . unwrap ( ) ;
23- std:: println!( "{}" , val - 4.0 ) ;
2423 assert ! ( f64 :: abs( val - 4.0 ) < 1e-14 ) ;
2524}
2625
@@ -54,7 +53,6 @@ fn test_booles_integration_2()
5453
5554 //partial integration for z, known to be 2.0*x*z + y*z*z/2.0, expect a value of ~15.0
5655 let val = integrator. get_single_partial ( & func, 2 , & integration_limit, & point) . unwrap ( ) ;
57- std:: println!( "{}" , val) ;
5856 assert ! ( f64 :: abs( val - 15.0 ) < 0.00001 ) ;
5957}
6058
@@ -76,27 +74,6 @@ fn test_booles_integration_3()
7674 assert ! ( f64 :: abs( val - 24.0 ) < 0.00001 ) ;
7775}
7876
79- #[ test]
80- fn test_booles_integration_4 ( )
81- {
82- //equation is 2.0*x + y*z
83- let func = | args : & [ f64 ; 2 ] | -> f64
84- {
85- return args[ 0 ] /( f64:: sqrt ( args[ 0 ] * args[ 0 ] + args[ 1 ] * args[ 1 ] ) ) ;
86- } ;
87-
88- let integration_limits = [ [ 0.0 , 1.0 ] , [ 0.0 , 1.0 ] ] ;
89- let point = [ 1.0 , 1.0 ] ;
90-
91- let integrator = iterative_integration:: MultiVariableSolver :: from_parameters ( 20 , IterativeMethod :: Booles ) ;
92-
93- //double partial integration for first x then y, expect a value of ~1.50
94- let val = integrator. get ( 1 , [ 0 ] , & func, & integration_limits, & point) . unwrap ( ) ;
95- let expected_val = 0.414 ;
96- std:: println!( "{}" , val - expected_val) ;
97- assert ! ( f64 :: abs( val - 1.50 ) < 0.00001 ) ;
98- }
99-
10077#[ test]
10178fn test_gauss_legendre_quadrature_integration_1 ( )
10279{
0 commit comments