@@ -22,6 +22,21 @@ Unset Printing Implicit Defensive.
2222Local Open Scope classical_set_scope.
2323Local Open Scope ring_scope.
2424
25+ HB.structure Definition POrderedNbhs d :=
26+ { T of Nbhs T & Order.isPOrder d T }.
27+
28+ HB.structure Definition POrderedTopological d :=
29+ { T of Topological T & Order.isPOrder d T }.
30+
31+ HB.structure Definition POrderedUniform d :=
32+ {T of Uniform T & Order.isPOrder d T}.
33+
34+ HB.structure Definition POrderedPseudoMetric d (R : numDomainType) :=
35+ {T of PseudoMetric R T & Order.isPOrder d T}.
36+
37+ HB.structure Definition POrderedPointedTopological d :=
38+ {T of PointedTopological T & Order.isPOrder d T}.
39+
2540(** TODO: generalize this to a preOrder once that's available *)
2641HB.mixin Record Order_isNbhs d (T : Type) of Nbhs T & Order.Total d T := {
2742 (** Note that just the intervals `]a, b[ doesn't work when the order has a
@@ -53,21 +68,21 @@ Local Open Scope classical_set_scope.
5368Context {d} {T : orderTopologicalType d}.
5469Implicit Types x y : T.
5570
56- Lemma rray_open x : open `]x, +oo[.
71+ Lemma rray_open x : @ open T `]x, +oo[.
5772Proof .
5873rewrite openE /interior => z xoz; rewrite itv_nbhsE.
5974by exists `]x, +oo[%O => //; split => //; left.
6075Qed .
6176Hint Resolve rray_open : core.
6277
63- Lemma lray_open x : open `]-oo, x[.
78+ Lemma lray_open x : @ open T `]-oo, x[.
6479Proof .
6580rewrite openE /interior => z xoz; rewrite itv_nbhsE.
6681by exists (`]-oo, x[)%O => //; split => //; left.
6782Qed .
6883Hint Resolve lray_open : core.
6984
70- Lemma itv_open x y : open `]x, y[.
85+ Lemma itv_open x y : @ open T `]x, y[.
7186Proof . by rewrite set_itv_splitI /=; apply: openI. Qed .
7287Hint Resolve itv_open : core.
7388
@@ -77,15 +92,15 @@ case: i; rewrite /itv_open_ends => [[[]t1|[]]] [[]t2|[]] []? => //.
7792by rewrite set_itvE; exact: openT.
7893Qed .
7994
80- Lemma rray_closed x : closed `[x, +oo[.
95+ Lemma rray_closed x : @ closed T `[x, +oo[.
8196Proof . by rewrite -setCitvl closedC. Qed .
8297Hint Resolve rray_closed : core.
8398
84- Lemma lray_closed x : closed `]-oo, x].
99+ Lemma lray_closed x : @ closed T `]-oo, x].
85100Proof . by rewrite -setCitvr closedC. Qed .
86101Hint Resolve lray_closed : core.
87102
88- Lemma itv_closed x y : closed `[x, y].
103+ Lemma itv_closed x y : @ closed T `[x, y].
89104Proof . by rewrite set_itv_splitI; apply: closedI => /=. Qed .
90105Hint Resolve itv_closed : core.
91106
0 commit comments