You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* [``\lim_{x\rightarrow a} f(x) =f(a)``] (_the two sided limit is equal to the function value_)
178
-
179
-
If one or more of those three conditions fails, then the function [`f(x)`] is discontinuous at [`x=a`].
180
-
181
-
182
-
If [`f(x)`] is discontinuous at [`x=a`], then
183
-
1. [`f`] has a *removable discontinuity* at [`a`] if [``\lim_{x\rightarrow a} f(x)``] exists and is equal to a real number.
184
-
2. [`f`] has a *jump discontinuity* at [`a`] if [``\lim_{x\rightarrow a^-} f(x)``] and [``\lim_{x\rightarrow a^+} f(x)``] both exist (and are equal to a real number) but are not equal to each other.
185
-
3. [`f`] has an *infinite discontinuity* at [`a`] if [``\lim_{x\rightarrow a^-} f(x)=\pm \infty``] or [``\lim_{x\rightarrow a^+} f(x)=\pm \infty``]
186
-
187
-
188
-
END_PGML_HINT
189
-
190
170
191
171
############################
192
172
# Answers
@@ -210,40 +190,18 @@ BEGIN_PGML
210
190
211
191
212
192
(b)
213
-
[` f(x)=[$f_3] `] ; at `x=1` the function is: [@ $popup5->menu() @]* Classification: [@ $popup6->menu() @]*
193
+
[`` f(x)=[$f_3] ``] ; at `x=1` the function is: [@ $popup5->menu() @]* Classification: [@ $popup6->menu() @]*
214
194
215
195
216
196
(c)
217
-
`f(x)=[$f_1]` ; at `x=-[$x]` the function is: [@ $popup1->menu() @]* Classification: [@ $popup2->menu() @]*
197
+
[`f(x)=[$f_1]`] ; at `x=-[$x]` the function is: [@ $popup1->menu() @]* Classification: [@ $popup2->menu() @]*
218
198
219
199
220
200
(d)
221
201
[` f(x)=[$fun2] `] ; at `x=0` the function is: [@ $popup7->menu() @]* Classification: [@ $popup8->menu() @]*
222
202
223
203
END_PGML
224
204
225
-
############################
226
-
227
-
BEGIN_PGML_HINT
228
-
229
-
Recall the definition of continuity at a point and the types of discontinuity:
230
-
231
-
A function, [`f(x)`], is continuous at [`x=a`] provided all three of the following hold true.
232
-
* [`f(a)`] is defined. (_the function value exists_)
* [``\lim_{x\rightarrow a} f(x) =f(a)``] (_the two sided limit is equal to the function value_)
235
-
236
-
If one or more of those three conditions fails, then the function [`f(x)`] is discontinuous at [`x=a`].
237
-
238
-
239
-
If [`f(x)`] is discontinuous at [`x=a`], then
240
-
1. [`f`] has a *removable discontinuity* at [`a`] if [``\lim_{x\rightarrow a} f(x)``] exists and is equal to a real number.
241
-
2. [`f`] has a *jump discontinuity* at [`a`] if [``\lim_{x\rightarrow a^-} f(x)``] and [``\lim_{x\rightarrow a^+} f(x)``] both exist (and are equal to a real number) but are not equal to each other.
242
-
3. [`f`] has an *infinite discontinuity* at [`a`] if [``\lim_{x\rightarrow a^-} f(x)=\pm \infty``] or [``\lim_{x\rightarrow a^+} f(x)=\pm \infty``]
243
-
244
-
245
-
END_PGML_HINT
246
-
247
205
248
206
############################
249
207
# Answers
@@ -267,11 +225,11 @@ BEGIN_PGML
267
225
268
226
269
227
(b)
270
-
[` f(x)=[$f_3] `] ; at `x=1` the function is: [@ $popup5->menu() @]* Classification: [@ $popup6->menu() @]*
228
+
[`` f(x)=[$f_3] ``] ; at `x=1` the function is: [@ $popup5->menu() @]* Classification: [@ $popup6->menu() @]*
271
229
272
230
273
231
(c)
274
-
`f(x)=[$f_1]` ; at `x=-[$x]` the function is: [@ $popup1->menu() @]* Classification: [@ $popup2->menu() @]*
232
+
[`f(x)=[$f_1]`] ; at `x=-[$x]` the function is: [@ $popup1->menu() @]* Classification: [@ $popup2->menu() @]*
275
233
276
234
277
235
(d)
@@ -281,28 +239,6 @@ BEGIN_PGML
281
239
282
240
END_PGML
283
241
284
-
############################
285
-
286
-
BEGIN_PGML_HINT
287
-
288
-
Recall the definition of continuity at a point and the types of discontinuity:
289
-
290
-
A function, [`f(x)`], is continuous at [`x=a`] provided all three of the following hold true.
291
-
* [`f(a)`] is defined. (_the function value exists_)
* [``\lim_{x\rightarrow a} f(x) =f(a)``] (_the two sided limit is equal to the function value_)
294
-
295
-
If one or more of those three conditions fails, then the function [`f(x)`] is discontinuous at [`x=a`].
296
-
297
-
298
-
If [`f(x)`] is discontinuous at [`x=a`], then
299
-
1. [`f`] has a *removable discontinuity* at [`a`] if [``\lim_{x\rightarrow a} f(x)``] exists and is equal to a real number.
300
-
2. [`f`] has a *jump discontinuity* at [`a`] if [``\lim_{x\rightarrow a^-} f(x)``] and [``\lim_{x\rightarrow a^+} f(x)``] both exist (and are equal to a real number) but are not equal to each other.
301
-
3. [`f`] has an *infinite discontinuity* at [`a`] if [``\lim_{x\rightarrow a^-} f(x)=\pm \infty``] or [``\lim_{x\rightarrow a^+} f(x)=\pm \infty``]
302
-
303
-
304
-
END_PGML_HINT
305
-
306
242
307
243
############################
308
244
# Answers
@@ -325,41 +261,19 @@ BEGIN_PGML
325
261
326
262
327
263
(b)
328
-
`f(x)=[$f_1]` ; at `x=-[$x]` the function is: [@ $popup1->menu() @]* Classification: [@ $popup2->menu() @]*
264
+
[``f(x)=[$f_1]``] ; at `x=-[$x]` the function is: [@ $popup1->menu() @]* Classification: [@ $popup2->menu() @]*
329
265
330
266
331
267
(c)
332
268
[` f(x)=[$fun2] `] ; at `x=0` the function is: [@ $popup7->menu() @]* Classification: [@ $popup8->menu() @]*
333
269
334
270
335
271
(d)
336
-
[` f(x)=[$f_3] `] ; at `x=1` the function is: [@ $popup5->menu() @]* Classification: [@ $popup6->menu() @]*
272
+
[`` f(x)=[$f_3] ``] ; at `x=1` the function is: [@ $popup5->menu() @]* Classification: [@ $popup6->menu() @]*
337
273
338
274
339
275
END_PGML
340
276
341
-
############################
342
-
343
-
BEGIN_PGML_HINT
344
-
345
-
Recall the definition of continuity at a point and the types of discontinuity:
346
-
347
-
A function, [`f(x)`], is continuous at [`x=a`] provided all three of the following hold true.
348
-
* [`f(a)`] is defined. (_the function value exists_)
* [``\lim_{x\rightarrow a} f(x) =f(a)``] (_the two sided limit is equal to the function value_)
351
-
352
-
If one or more of those three conditions fails, then the function [`f(x)`] is discontinuous at [`x=a`].
353
-
354
-
355
-
If [`f(x)`] is discontinuous at [`x=a`], then
356
-
1. [`f`] has a *removable discontinuity* at [`a`] if [``\lim_{x\rightarrow a} f(x)``] exists and is equal to a real number.
357
-
2. [`f`] has a *jump discontinuity* at [`a`] if [``\lim_{x\rightarrow a^-} f(x)``] and [``\lim_{x\rightarrow a^+} f(x)``] both exist (and are equal to a real number) but are not equal to each other.
358
-
3. [`f`] has an *infinite discontinuity* at [`a`] if [``\lim_{x\rightarrow a^-} f(x)=\pm \infty``] or [``\lim_{x\rightarrow a^+} f(x)=\pm \infty``]
Copy file name to clipboardExpand all lines: Contrib/CCCS/CalculusOne/04.5/CCD_CCCS_Openstax_Calc1_C1-2016-002_4_5_217.pg
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -132,7 +132,7 @@ Draw a graph of a function, [`f(x)`], that satisfies the following specification
132
132
133
133
[`f'(x)<0`] for [`[$a]<x<[$c]`]
134
134
135
-
[`f''(x)<0`] for all [`x`]
135
+
[`f''(x)<0`] for all [`x \neq [$c]`]
136
136
137
137
Which of the following graphs is a graph of [`f(x)`] that satisfies the given specifications on the interval [`[[$b],[$d]]`]? [_________________]{$popup1}
0 commit comments