|
18 | 18 | ## Problem1('61') |
19 | 19 | ## KEYWORDS('integral') |
20 | 20 |
|
21 | | -DOCUMENT(); # This should be the first executable line in the problem. |
| 21 | +DOCUMENT(); # This should be the first executable line in the problem. |
22 | 22 |
|
23 | | -loadMacros( |
24 | | - "PGstandard.pl", |
25 | | - "PGchoicemacros.pl", |
26 | | - "PGcourse.pl" |
27 | | -); |
| 23 | +loadMacros('PGstandard.pl', 'PGML.pl', 'PGchoicemacros.pl', 'PGcourse.pl'); |
28 | 24 |
|
29 | | -TEXT(beginproblem()); |
30 | 25 | $showPartialCorrectAnswers = 1; |
31 | 26 |
|
32 | | -$a= random(1, 10, 1); |
33 | | -$add1= random(1, 10, 1); |
34 | | -$add2= random(1, 10, 1); |
35 | | -$b=$a+$add1; |
36 | | -$c=$b+$add2; |
| 27 | +$a = random(1, 10, 1); |
| 28 | +$add1 = random(1, 10, 1); |
| 29 | +$add2 = random(1, 10, 1); |
| 30 | +$b = $a + $add1; |
| 31 | +$c = $b + $add2; |
37 | 32 |
|
38 | | -TEXT(EV2(<<EOT)); |
39 | | -\[ \int_{$a}^{$c} f(x) \,dx - \int_{$a}^{$b} f(x) \,dx = \int_{a}^{b} f(x) \,dx\] |
40 | | -$BR where \( a= \) |
41 | | -\{ans_rule( 10)\} |
42 | | -and \( b= \) \{ans_rule( 10)\}. |
43 | | -EOT |
| 33 | +BEGIN_PGML |
| 34 | +[``` \int_{[$a]}^{[$c]} f(x) \,dx - \int_{[$a]}^{[$b]} f(x) \,dx = \int_{a}^{b} f(x) \,dx```] |
44 | 35 |
|
45 | | -$lowerbound=$b; |
46 | | -$upperbound=$c; |
47 | 36 |
|
48 | | -ANS(num_cmp($lowerbound), num_cmp($upperbound)); |
| 37 | + where [` a= `] [_]{$b} |
| 38 | +and [` b= `] [_]{$c}. |
| 39 | +END_PGML |
49 | 40 |
|
| 41 | +BEGIN_PGML_SOLUTION |
50 | 42 |
|
51 | | -&SOLUTION(EV3(<<'EOT')); |
52 | | - |
53 | | -$SOL $BR |
54 | | - |
55 | | -First recall the that |
56 | | - \[ \int_{a}^{b} f(x) \,dx + \int_{b}^{c} f(x) \,dx = \int_{a}^{c} f(x) \,dx \] |
| 43 | +First recall that |
| 44 | + [``` \int_{a}^{b} f(x) \,dx + \int_{b}^{c} f(x) \,dx = \int_{a}^{c} f(x) \,dx ```] |
57 | 45 | and therefore we can rearrange it to look like this: |
58 | | - \[ \int_{a}^{c} f(x) \,dx - \int_{a}^{b} f(x) \,dx = \int_{b}^{c} f(x) \,dx \] |
59 | | -$BR |
| 46 | + [``` \int_{a}^{c} f(x) \,dx - \int_{a}^{b} f(x) \,dx = \int_{b}^{c} f(x) \,dx ```] |
60 | 47 |
|
61 | | -Applying that in this specific context, we find: |
62 | | - \[ |
63 | | - \int_{$a}^{$c} f(x) \,dx - \int_{$a}^{$b} f(x) \,dx = \int_{$b}^{$c} f(x) \,dx |
64 | | - \] |
65 | | -Thus we find \(a=$b\) and \(b=$c\). |
66 | 48 |
|
67 | | -EOT |
| 49 | +Applying that in this specific context, we find: |
| 50 | + [``` |
| 51 | + \int_{[$a]}^{[$c]} f(x) \,dx - \int_{[$a]}^{[$b]} f(x) \,dx = \int_{[$b]}^{[$c]} f(x) \,dx |
| 52 | + ```] |
| 53 | +Thus we find [` a=[$b]`] and [`b=[$c]`]. |
68 | 54 |
|
| 55 | +END_PGML_SOLUTION |
69 | 56 |
|
70 | 57 | ENDDOCUMENT(); # This should be the last executable line in the problem. |
71 | | - |
0 commit comments