Skip to content

Commit cee2af7

Browse files
committed
Merge branch 'main' of github.com:gajennings/webwork-open-problem-library
2 parents 8312378 + ec8b99b commit cee2af7

File tree

4 files changed

+5
-7
lines changed

4 files changed

+5
-7
lines changed

Contrib/NAU/setFunctionComposition/funcEq3.pg

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
## Level(4)
1111
## MO(1)
1212
## KEYWORDS('function equation')
13-
## date 9/26/2013
13+
## date 9/7/2018
1414

1515
DOCUMENT();
1616
loadMacros(

Contrib/NAU/setFunctionComposition/funcEq4.pg

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
## Level(4)
1111
## MO(1)
1212
## KEYWORDS('function equation')
13-
## date 9/26/2013
13+
## date 9/7/2018
1414

1515
DOCUMENT();
1616
loadMacros(
@@ -19,8 +19,6 @@ loadMacros(
1919
"PGcourse.pl"
2020
);
2121

22-
COMMENT('This is a bit tricky.');
23-
2422
Context("Numeric");
2523

2624
{

OpenProblemLibrary/NAU/setCalcIII/centroidConeSurface.pg

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
##DESCRIPTION
22
## DBsubject(Calculus - multivariable)
3-
## DBchapter(Integration of multivariable functions)
4-
## DBsection(Applications of double integrals)
3+
## DBchapter(Vector calculus)
4+
## DBsection(Surface integrals of scalar fields)
55
## Institution(NAU)
66
## Author(Nandor Sieben)
77
## Level(3)

OpenProblemLibrary/NAU/setCalcIII/divergence2D.pg

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ TEXT(beginproblem());
2828

2929
Context()->texStrings;
3030
BEGIN_TEXT
31-
Let \(F(x,y)=($a x , $b y ) \). Find the area of the closed, bounded region \( R\subseteq \mathbb{R}^2 \) if the flux of \( F \) through the boundary \(\partial R \) of \( R \) is \(\int_{\partial R}F\cdot N\; ds = $c \).
31+
Let \(F(x,y)=($a x , $b y ) \). Find the area of the closed, bounded region \( R\subseteq \mathbb{R}^2 \) if the flux of \( F \) through the boundary \(\partial R \) of \( R \) is \(\int_{\partial R}F\cdot N = $c \).
3232
$BR
3333
area\( (R)= \) \{ ans_rule(35) \}
3434

0 commit comments

Comments
 (0)