We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent b634c7b commit e8e2e52Copy full SHA for e8e2e52
OpenProblemLibrary/Union/setIntByParts/sc5_6_01.pg
@@ -35,4 +35,19 @@ Evaluate the indefinite integral.
35
[_]{$antideriv->cmp(upToConstant=>1)}{50} [` + C`].
36
END_PGML
37
38
+BEGIN_PGML_SOLUTION
39
+Calculate the integral using integration by parts.
40
+
41
+Let [`u=x`] and [`dv=e^{[$a]x}dx`]
42
43
+Then [`du=dx`] and [`v=\frac{1}{[$a]}e^{[$a]x}`].
44
45
+[``\int u\,dv=uv-\int v\,du``], so
46
47
+[``\begin{eqnarray}\int xe^{[$a]x}\,dx & = & x\left(\frac{1}{[$a]}e^{[$a]x}\right)-\int \frac{1}{[$a]}e^{[$a]x}\,dx\\
48
+& = & \frac{1}{[$a]}\left(xe^{[$a]x}-\int e^[$a]x\,dx\right)+C\\
49
+& = & \frac{1}{[$a]}\left(xe^{[$a]x}-\frac{1}{[$a]} e^[$a]x\,dx\right)+C
50
+\end{eqnarray}``]
51
+END_PGML_SOLUTION
52
53
ENDDOCUMENT();
0 commit comments