diff --git a/OpenProblemLibrary/Michigan/Chap2Sec3/Q09.pg b/OpenProblemLibrary/Michigan/Chap2Sec3/Q09.pg index 93120d7924..2df51e4ee3 100644 --- a/OpenProblemLibrary/Michigan/Chap2Sec3/Q09.pg +++ b/OpenProblemLibrary/Michigan/Chap2Sec3/Q09.pg @@ -94,7 +94,7 @@ Consider the function \(f(x)\) shown in the graph below. $BR $BCENTER \{ image( insertGraph($gr), tex_size=>500, height=>250, width=>250, - extra_html_tags=>'alt="graph of a function"' ) \} + alt=>"Graph of a function" ) \} $BR ${BITALIC}(Note that you can click on the graph to get a larger version of it, and that it may be useful to print that larger version to be able to @@ -125,8 +125,7 @@ foreach my $d ( @derivs ) { # ANS(num_cmp( [@derivs], 'tol'=>0.25 ) ); Context()->texStrings; -SOLUTION(EV3(<<'END_SOLUTION')); -$PAR SOLUTION $PAR +BEGIN_SOLUTION At each value of \(x\), we estimate the derivative by estimating the slope (=rise/run) from the graph. This allows us to both sketch the