Skip to content

Commit 933322f

Browse files
authored
Merge pull request #277 from roboflow/docs-updates
Fix deploy_to_roboflow docs, update README, fix broken link
2 parents 3efdc84 + 9cb2435 commit 933322f

File tree

4 files changed

+16
-8
lines changed

4 files changed

+16
-8
lines changed

README.md

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -25,15 +25,14 @@ RF-DETR is small enough to run on the edge using [Inference](https://github.com/
2525
- `2025/03/20`: We release RF-DETR real-time object detection model. **Code and checkpoint for RF-DETR-large and RF-DETR-base are available.**
2626
- `2025/04/03`: We release early stopping, gradient checkpointing, metrics saving, training resume, TensorBoard and W&B logging support.
2727
- `2025/05/16`: We release an 'optimize_for_inference' method which speeds up native PyTorch by up to 2x, depending on platform.
28-
- `2025/07/23`: We release new SOTA model sizes: RF-DETR-Nano, RF-DETR-Small, RF-DETR-Medium.
2928

3029
## Results
3130

3231
RF-DETR achieves state-of-the-art performance on both the Microsoft COCO and the RF100-VL benchmarks.
3332

3433
The table below shows the performance of RF-DETR medium, compared to comparable medium models:
3534

36-
![rf-detr-coco-rf100-vl-9](https://media.roboflow.com/rfdetr/pareto.png)
35+
![rf-detr-coco-rf100-vl-9](https://media.roboflow.com/rfdetr/pareto1.png)
3736

3837
|family|size |coco_map50|coco_map50@95|rf100vl_map50|rv100vl_map50@95|latency|
3938
|------|------|----------|------------|-------------|---------------|-------|

docs/index.md

Lines changed: 11 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ We validated the performance of RF-DETR on both Microsoft COCO and the RF100-VL
2020

2121
[See our full benchmarks.](learn/benchmarks/)
2222

23-
<img src="https://media.roboflow.com/rfdetr/pareto.png" style="max-height: 50rem" />
23+
<img src="https://media.roboflow.com/rfdetr/pareto1.png" style="max-height: 50rem" />
2424

2525
## 💻 Install
2626

@@ -116,14 +116,22 @@ You can install and use `rfdetr` in a
116116

117117
Load and run a pre-trained RF-DETR model.
118118

119-
[:octicons-arrow-right-24: Tutorial](how_to/detect_and_annotate.md)
119+
[:octicons-arrow-right-24: Tutorial](/learn/pretrained)
120120

121121
- **Train an RF-DETR Model**
122122

123123
---
124124

125125
Learn how to train an RF-DETR model with the `rfdetr` Python package.
126126

127-
[:octicons-arrow-right-24: Tutorial](how_to/track_objects.md)
127+
[:octicons-arrow-right-24: Tutorial](/learn/train/)
128+
129+
- **Deploy an RF-DETR Model**
130+
131+
---
132+
133+
Learn how to deploy an RF-DETR model in the cloud and on your device.
134+
135+
[:octicons-arrow-right-24: Tutorial](/learn/deploy/)
128136

129137
</div>

docs/learn/benchmarks.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ On this page, we outline our results from our Microsoft COCO benchmarks, benchma
44

55
The table below shows the performance of RF-DETR, compared to other object detection models:
66

7-
![rf-detr-coco-rf100-vl-9](https://media.roboflow.com/rfdetr/pareto.png)
7+
![rf-detr-coco-rf100-vl-9](https://media.roboflow.com/rfdetr/pareto1.png)
88

99
|family|size |coco_map50|coco_map5095|rf100vl_map50|rv100vl_map5095|latency|
1010
|------|------|----------|------------|-------------|---------------|-------|

docs/learn/deploy.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -9,10 +9,11 @@ To deploy your model to Roboflow, run:
99
```python
1010
from rfdetr import RFDETRNano
1111

12-
x = RFDETRNano(pretrain_weights="<path/to/prtrain/weights/dir>")
12+
x = RFDETRNano(pretrain_weights="<path/to/pretrain/weights/dir>")
1313
x.deploy_to_roboflow(
1414
workspace="<your-workspace>",
15-
project_ids=["<your-project-id>"],
15+
project_id="<your-project-id>",
16+
version=1,
1617
api_key="<YOUR_API_KEY>"
1718
)
1819
```

0 commit comments

Comments
 (0)