Ruiqi Wu1,2,3*, Xuanhua He4,2*, Meng Cheng2*, Tianyu Yang2, Yong Zhang2‡, Zhuoliang Kang2, Xunliang Cai2, Xiaoming Wei2, Chunle Guo1,3†, Chongyi Li1,3, Ming-Ming Cheng1,3
1Nankai University 2Meituan 3NKIARI 4HKUST
*Equal Contribution †Corresponding Author ‡Project Leader
Infinite-World is a robust interactive world model with:
- Real-World Training — Trained on real-world videos without requiring perfect pose annotations or synthetic data
- 1000+ Frame Memory — Maintains coherent visual memory over 1000+ frames via Hierarchical Pose-free Memory Compressor (HPMC)
- Robust Action Control — Uncertainty-aware action labeling ensures accurate action-response learning from noisy trajectories
Environment: Python 3.10, CUDA 12.4 recommended.
conda create -n infworld python=3.10
conda activate infworldpip install torch==2.6.0 torchvision==0.21.0 --index-url https://download.pytorch.org/whl/cu124pip install -r requirements.txtAll model paths are configured in configs/infworld_config.yaml. Paths are relative to the project root unless absolute.
Download checkpoints from https://huggingface.co/MeiGen-AI/Infinite-World and place files under checkpoints/:
| File / directory | Config key | Description |
|---|---|---|
models/Wan2.1_VAE.pth |
vae_cfg.vae_pth |
VAE weights |
models/models_t5_umt5-xxl-enc-bf16.pth |
text_encoder_cfg.checkpoint_path |
T5 text encoder |
models/google/umt5-xxl (folder) |
text_encoder_cfg.tokenizer_path |
T5 tokenizer |
infinite_world_model.ckpt |
checkpoint_path |
DiT model weights |
| Model | Mot. Smo.↑ | Dyn. Deg.↑ | Aes. Qual.↑ | Img. Qual.↑ | Avg. Score↑ | Memory↓ | Fidelity↓ | Action↓ | ELO Rating↑ |
|---|---|---|---|---|---|---|---|---|---|
| Hunyuan-GameCraft | 0.9855 | 0.9896 | 0.5380 | 0.6010 | 0.7785 | 2.67 | 2.49 | 2.56 | 1311 |
| Matrix-Game 2.0 | 0.9788 | 1.0000 | 0.5267 | 0.7215 | 0.8068 | 2.98 | 2.91 | 1.78 | 1432 |
| Yume 1.5 | 0.9861 | 0.9896 | 0.5840 | 0.6969 | 0.8141 | 2.43 | 1.91 | 2.47 | 1495 |
| HY-World-1.5 | 0.9905 | 1.0000 | 0.5280 | 0.6611 | 0.7949 | 2.59 | 2.78 | 1.50 | 1542 |
| Infinite-World | 0.9876 | 1.0000 | 0.5440 | 0.7159 | 0.8119 | 1.92 | 1.67 | 1.54 | 1719 |
If you find this work useful, please consider citing:
@article{wu2026infiniteworld,
title={Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory},
author={Wu, Ruiqi and He, Xuanhua and Cheng, Meng and Yang, Tianyu and Zhang, Yong and Kang, Zhuoliang and Cai, Xunliang and Wei, Xiaoming and Guo, Chunle and Li, Chongyi and Cheng, Ming-Ming},
journal={arXiv preprint arXiv:2602.02393},
year={2026}
}This project is released under the MIT License.

