A framework for training and evaluating set neural models — including MasNet, ReLUMasNet, DeepSets, and SetTransformer — on benchmark tasks such as FacilityLocation and SubSet. Built on PyTorch Lightning, the framework provides reproducible training, automatic checkpointing, and optional out-of-distribution (OOD) evaluation.
git clone https://github.com/yonatansverdlov/Monotone-Embedding.git
cd <your_repo>
conda env create -f dependencies.yml
conda activate <environment_name_from_yml>(Make sure torch, pytorch-lightning, and easydict are included in your requirements.txt.)
cd MonotoneModel_real/data
python msweb_data_generator.py --DATASET_NAME MSWEB
python msweb_data_generator.py --DATASET_NAME MSWEBcd MonotoneModel_real/data
python amazon.py --dataset_name bedding/feedingd MonotoneModel_real/data
python pointcloud.py --s1_size 128 & python pointcloud.py --s1_size 256 & python pointcloud.py --s1_size 128cd MonotoneModel_real
./run_datasets.shcd MonotoneModel_real
./run_pointcloud.shcd MonotoneModel_synthetic
python main.py --task_type FacilityLocation --model_type MasNetcd MonotoneModel_synthetic
python main.py --task_type SubSet --model_type SetTransformercd MonotoneModel_synthetic
python main.py --model_type ReLUMasNet --test_dist| Argument | Type | Default | Description |
|---|---|---|---|
--task_type |
str | FacilityLocation |
Task name (FacilityLocation or SubSet) |
--model_type |
str | MasNet |
Model architecture (ReLUMasNet, DeepSets, MasNet, SetTransformer) |
.
├── MonotoneModel_real
├── MonotoneModel_synthetic
├── ddependencies.yaml
├── README.md
If you use this repository in your research, please cite:
@misc{sarangi2025monotoneseparablesetfunctions,
title={Monotone and Separable Set Functions: Characterizations and Neural Models},
author={Soutrik Sarangi and Yonatan Sverdlov and Nadav Dym and Abir De},
year={2025},
eprint={2510.23634},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2510.23634},
}
MIT License © 2025 Yonatan Sverdlov